关注微信

推荐商品

    加载中... 正在为您读取数据...
分享到:
  • 局部域上的调和分析与分形分析及其应用/现代数学基础丛书[平装]
  • 共1个商家     42.30元~42.30
  • 作者:苏维宜(作者)
  • 出版社:科学出版社;第1版(2011年6月1日)
  • 出版时间:
  • 版次 :
  • 印刷时间:
  • 包装:
  • ISBN:9787030314154

  • 商家报价
  • 简介
  • 评价
  • 加载中... 正在为您读取数据...
  • 商品描述

    编辑推荐

    苏维宜所著的《局部域上的调和分析与分形分析及其应用》分三个大部分,共7章。一是局部域的基本知识(第1,2章);二是局部域上的调和分析的基础理论(第3,4章);三是局部域上的分形分析、理论与应用(第5—7章)。第1章介绍Galois域GF(p)的基本知识与局部域的结构;第2章对局部域的特征群作详细分析;第3,4章是局部域上调和分析的基础理论,包括局部域上的Fourier分析、局部域上的函数空间、以局部域为底空间的微积分,以及局部域分析与经典分析的深入比较;第5章转入局部域上的分形分析,包括分形的基本知识、局部域上的分形集合与分形函数、局部域分形分析与欧氏空间分形分析各自的特点以及它们之间的关系;第6章是局部域上的分形偏微分方程(PDE),给出分形PDE的基础性研究成果与挑战性研究课题;最后,第7章给出分形在临床医学中的应用。

    目录

    《现代数学基础丛书》序
    前言
    第1章 基本知识
    1.1 Galois域GF(p)
    1.1.1 Galois域GF(p)、特征数p
    1.1.2 Galois域GFep)的代数扩域F
    1.2 局部域Kq的结构
    1.2.1 局部域的定义
    1.2.2 局部域Kq的赋值结构
    1.2.3 局部域Kq上的Haar测度与Haar积分
    1.2.4 局部域Kq中的重要子集
    1.2.5 局部域Kq的邻域基
    1.2.6 局部域Kq中元的表示与运算
    1.2.7 局部域Kp中球的重要性质
    1.2.8 局部域Kp的序结构
    1.2.9 局部域Kq与欧氏空间R的关系
    第2章 局部域Kp的特征群Γp
    2.1 局部紧群的特征群
    2.1.1 群的特征
    2.1.2 局部紧群的特征
    2.1.3 Pontryagin对偶定理
    2.1.4 例
    2.2 Kp的特征群Γp
    2.2.1 Γp的性质
    2.2.2 Kp为p级数域Sp的情形
    2.2.3 Kp为p进数域Ap的情形
    2.3 局部域%中的几个公式
    2.3.1 Kp中重要子集的Haar测度
    2.3.2 Kp中关于特征的积分
    2.3.3 Kp中几个函数的积分
    第3章 局部域Kp上的调和分析
    3.1 局部域Kp上的Fouriei分析
    3.1.1 L1理论
    3.1.2 L2理论
    3.1.3 Lr理论
    3.1.4 分布理论
    3.2 局部域Kp上的拟微分算子
    3.2.1 局部域上的象征类Sα ρδ(Kp)三Sα ρδ(Kp×Γp)
    3.2.2 局部域上的拟微分算子Tσ
    3.3 局部域Kp上的p型导数与p型积分
    3.3.1 局部域Kp上函数的p型导数与p型积分
    3.3.2 S(Kp)函数的p型导数与p型积分的性质
    3.3.3 分布T∈S*(Kp)的p型导数与p型积分
    3.3.4 局部域上微积分建立的历史回顾
    3.4 局部域Kp上的算子与函数逼近理论
    3.4.1 局部域Kp上的算子理论
    3.4.2 局部域Kp上的函数逼近理论
    第4章 局部域Kp上的函数空间
    4.1 局部域Kp上的B型空间、F型空间
    4.1.1 B型空间、F型空间
    4.1.2 B型空间与F型空间的特例
    4.1.3 局部域上的Holder型空间
    4.1.4 局部域上的Lebesgue型空间、Sobolev型空间
    4.2 局部域Kp上的Lipschitz类
    4.2.1 局部域上的Lipschitz类
    4.2.2 欧氏空间上的函数空间链
    4.2.3 局部域Kp的情形
    4.2.4 欧氏空间分析与局部域分析比较
    4.3 局部域Kp上的分形空间
    4.3.1 Kp上的分形空间
    4.3.2 Kp上分形空间(K(Kp),h)的完备性
    4.3.3 Kp中几种常用的变换
    第5章 局部域Kp上的分形分析
    5.1 局部域Kp上的分形维数
    5.1.1 Hausdorff测度与维数
    5.1.2 盒维数
    5.1.3 填充测度与维数
    5.2 局部域Kp中集合维数的分析表示
    5.2.1 局部域中的Borel可测集、Borel测度
    5.2.2 分布维数
    5.2.3 Fourier维数
    5.3 局部域Kp上p型微积分与分形维数
    5.3.1 Kp的结构、Cantor型三分集、Cantor型三分函数
    5.3.2 K3中的Cantor型三分函数的p型导数与积分
    5.3.3 Kp上的Weierstrass型函数的p型导数与积分
    5.3.4 Kp上的第二型Weierstrass型函数的p型导数与积分
    第6章 局部域Kp上的分形PDE
    6.1 特殊例子
    6.1.1 经典二维波动方程的分形边界问题
    6.1.2 p型二维波动方程的分形边界问题
    6.2 局部域Kp上分形PDE的一般理论
    6.2.1 拟微分算子死
    6.2.2 局部域上分形PDE的进一步研究
    第7章 局部域分析与分形分析在临床医学上的应用
    7.1 肝癌恶性程度的判定
    7.1.1 肝癌的肆虐、解决的途径
    7.1.2 肝癌研究中的主要手段
    7.2 肝癌恶性程度研究的实例
    7.2.1 在肝癌患者的影像学资料中提取数据
    7.2.2 提取数据的数学处理
    7.2.3 分形维数的计算
    7.2.4 分析多例病患资料得出规律,归纳得到数学模型
    7.2.5 肝癌研究中的其他问题
    参考文献
    索引
    《现代数学基础丛书》已出版书目