关注微信

推荐商品

    加载中... 正在为您读取数据...
分享到:
  • 拓扑学(英文版)[平装]
  • 共3个商家     23.40元~26.39
  • 作者:亚尼齐(作者)
  • 出版社:世界图书出版公司;第1版(2012年1月1日)
  • 出版时间:
  • 版次 :
  • 印刷时间:
  • 包装:
  • ISBN:9787510040641

  • 商家报价
  • 简介
  • 评价
  • 加载中... 正在为您读取数据...
  • 商品描述

    编辑推荐

    亚尼齐编著的《拓扑学》内容介绍:This volume covers approximately the amount of point-set topology that a student who does not intend to specialize in the field should nevertheless know.This is not a whole lot, and in condensed form would occupy perhaps only a small booklet. Our aim, however, was not economy of words, but a lively presentation of the ideas involved, an appeal to intuition in both the immediate and the higher meanings.

    目录

    Introduction
    1.what is point-set topology about?
    2.origin and beginnings
    Chapter Ⅰ fundamental concepts
    1.the concept of a topological space
    2.metric spaces
    3.subspaces, disjoint unions and products
    4.rases and subbases
    5.continuous maps
    6.connectedness
    7.the hausdorff separation axiom
    8.compactness
    Chapter Ⅱ topological vector spaces
    1.the notion of a topological vector space
    2.finite-dimensional vector spaces
    3.hilbert spaces
    4.banach spaces
    5.frechet spaces
    6.locally convex topological vector spaces
    7.a couple of examples
    Chapter Ⅲ the quotient topology
    1.the notion of a quotient space
    2.quotients and maps
    3.properties of quotient spaces
    4.examples: homogeneous spaces
    5.examples: orbit spaces
    6.examples: collapsing a subspace to a point
    7.examples: gluing topological spaces together
    Chapter Ⅳ completion of metric spaces
    1.the completion of a metric space
    2.completion of a map
    3.completion of normed spaces
    Chapter Ⅴ homotopy
    1.homotopic maps
    2.homotopy equivalence
    3.examples
    4.categories
    5.functors
    6.what is algebraic topology?
    7.homotopy--what for?
    Chapter Ⅵ the two countability axioms
    1.first and second countability axioms
    2.infinite products
    3.the role of the countability axioms
    Chapter Ⅶ cw-complexes
    1.simplicial complexes
    2.cell decompositions
    3.the notion of a cw-complex
    4.subcomplexes
    5.cell attaching
    6.why cw-complexes are more flexible
    7.yes, but...?
    Chapter Ⅷ construction of continuous functions on topological spaces
    1.the urysohn lemma
    2.the proof of the urysohn lemma
    3.the tietze extension lemma
    4.partitions of unity and vector bundle sections
    5.paracompactness
    Chapter Ⅸ covering spaces
    1.topological spaces over x
    2.the concept of a covering space
    3.path lifting
    4.introduction to the classification of covering spaces
    5.fundamental group and lifting behavior
    6.the classification of covering spaces
    7.covering transformations and universal cover
    8.the role of covering spaces in mathematics
    Chapter Ⅹ the theorem of tychonoff
    1.an unlikely theorem?
    2.what is it good for?
    3.the proof
    last Chapter
    set theory (by theodor br6cker)
    references
    table of symbols
    index