关注微信

推荐商品

    加载中... 正在为您读取数据...
分享到:
  • 热物理概念:热力学与统计物理学(第2版)[平装]
  • 共3个商家     44.00元~47.30
  • 作者:布隆代尔(StephenJ.Blundell)(作者),布隆代尔(KatherineM.Blundell)(作者)
  • 出版社:清华大学出版社;第1版(2012年8月1日)
  • 出版时间:
  • 版次 :
  • 印刷时间:
  • 包装:
  • ISBN:9787302294078

  • 商家报价
  • 简介
  • 评价
  • 加载中... 正在为您读取数据...
  • 商品描述

    编辑推荐

    《热物理概念:热力学与统计物理学(第2版)》可作为综合大学或师范院校物理学以及相关专业的热力学统计物理课程的教材。

    作者简介

    作者:(英国)布隆代尔(Stephen J.Blundell) (英国)布隆代尔(Katherine M.Blundell)

    目录

    前言
    第2版前言
    Ⅰ准备知识
    1引言
    1.1摩尔是什么?
    1.2热力学极限
    1.3理想气体
    1.4组合问题
    1.5本书的计划
    练习
    2热量
    2.1热量的定义
    2.2热容量
    练习
    3概率
    3.1离散概率分布
    3.2连续概率分布
    3.3线性变换
    3.4方差
    3.5线性变换和方差
    3.6独立变量
    3.7二项分布
    进一步读物
    练习
    4温度和Boltzmann因子
    4.1热平衡
    4.2温度计
    4.3微观态和宏观态
    4.4温度的统计定义
    4.5系综
    4.6正则系综
    4.7 Boltzmann分布的应用
    进一步读物
    练习
    Ⅱ气体动理学理论
    5 Maxwell—Boltzmann分布
    5.1速度分布
    5.2速率分布
    5.3实验验证
    练习
    6压强
    6.1分子分布
    6.2理想气体定律
    6.3 Dolton定律
    练习
    7分子泻流
    7.1流密度
    7.2泻流
    练习
    8平均自由程和碰撞
    8.1平均碰撞时间
    8.2碰撞截面
    8.3平均自由程
    Ⅲ输运和热扩散
    9气体的输运性质
    9.1黏性
    9.2热导率
    9.3扩散
    9.4更细致的理论
    进一步读物
    练习
    10热扩散方程
    10.1热扩散方程的导出
    10.2一维热扩散方程
    10.3稳态
    10.4球的热扩散方程
    10.5 Newton冷却定律
    10.6 Prandtl数
    10.7热源
    10.8粒子扩散
    练习
    Ⅳ第一定律
    11能量
    11.1一些定义
    11.2热力学第一定律
    11.3热容量
    练习
    12等温过程和绝热过程
    12.1可逆性
    12.2理想气体的等温膨胀
    12.3理想气体的绝热膨胀
    12.4绝热大气
    练习
    Ⅴ第二定律
    13热机和第二定律
    13.1热力学第二定律
    13.2 Carnot热机
    13.3 Carnot定理
    13.4 Clausius表述与Kelvin表述的等价性
    13.5热机实例
    13.6逆向运行的热机
    13.7 Clausius定理
    进一步读物
    练习
    14熵
    14.1熵的定义
    14.2不可逆变化
    14.3再论第一定律
    14.4 Joule膨胀
    14.5熵的统计基础
    14.6混合的熵
    14.7 Maxwell妖
    14.8熵和概率
    练习
    15信息论
    15.1信息和Shannon熵
    15.2信息和热力学
    15.3数据压缩
    15.4量子信息
    15.5条件概率和联合概率
    15.6 Bayes定理
    进一步读物
    练习
    Ⅵ热力学应用
    16热力学势
    16.1内能U
    16.2焓H
    16.3 Helmholtz函数F
    16.4 Gibbs函数G
    16.5约束
    16.6 Maxwell关系
    练习
    17杆,气泡和磁体
    17.1弹性杆
    17.2表面张力
    17.3电偶极子和磁偶极子
    17.4顺磁性
    练习
    18第三定律
    18.1第三定律的不同表述
    18.2第三定律的一些结果
    练习
    Ⅶ统计力学
    19能量均分
    19.1能量均分定理
    19.2应用
    19.3所作假设
    19.4 Brown运动
    练习
    ……
    Ⅷ超越理想气体
    Ⅸ 特殊专题
    A基本常数
    B有用的公式
    C有用的数学
    D电磁谱
    E一些热力学定义
    F热力学展开公式
    G约化质量
    H主要符号总表
    参考文献
    索引

    文摘

    版权页:



    插图:



    1.2 The thermodynamic limit
    In this section, we will explain how the large numbers of molecules ina typical thermodynamic system mean that it is possible to deal withaverage quantities. Our explanation proceeds using an analogy: imaginethat you are sitting inside a tiny hut with a fiat roof. It is rainingoutside, and you can hear the occasional raindrop striking the roof. Theraindrops arrive randomly, so sometimes two arrive close together, butsometimes there is quite a long gap between raindrops. Each raindroptransfers its momentum to the roof and exerts an impulse2 on it. If youknew the mass and terminal velocity of a raindrop, you could estimatethe force on the roof of the hut. The force as a function of time wouldlook like that shown in Fig. 1.1(a), each little blip corresponding to theimpulse from one raindrop.
    Now imagine that you are sitting inside a much bigger hut with a fiatroof a thousand times the area of the first roof. Many more raindropswill now be falling on the larger roof area and the force as a function oftime would look like that shown in Fig. 1.1(b). Now scale up the areaof the fiat roof by a further factor of one hundred and the force wouldlook like that shown in Fig. 1.1. Notice two key things about thesegraphs:
    (1) The force, on average, gets bigger as the area of the roof getsbigger. This is not surprising because a bigger roof catches moreraindrops.
    (2) The fluctuations in the force get smoothed out and the force lookslike it stays much closer to its average value. In fact, the fluctuations are still big but, as the area of the roof increases, they growmore slowly than the average force does.
    The force grows with area, so it is useful to consider the pressure, whichis defined as
    The average pressure due to the falling raindrops will not change as thearea of the roof increases, but the fluctuations in the pressure will decrease. In fact, we can completely ignore the fluctuations in the pressurein the limit that the area of the roof grows to infinity. This is preciselyanalogous to the limit we refer to as the thermodynamic limit.
    Consider now the molecules of a gas which are bouncing around in acontainer. Each time the molecules bounce off the walls of the container,they exert an impulse on the walls. The net effect of all these impulses isa pressure, a force per unit area, exerted on the walls of the container. Ifthe container were very small, we would have to worry about fluctuationsin the pressure (the random arrival of individual molecules on the wall,much like the raindrops in Fig. 1.1(a)). However, in most cases that onemeets, the number of molecules in a container of gas is extremely large,so these fluctuations can be ignored and the pressure of the gas appearsto be completely uniform. Again, our description of the pressure of thissystem can be said to be "in the thermodynamic limit", where we havelet the number of molecules be regarded as tending to infinity in such away that the density of the gas is a constant.