关注微信

推荐商品

    加载中... 正在为您读取数据...
分享到:
  • 统计力学(第3版)[平装]
  • 共4个商家     111.20元~118.20
  • 作者:帕斯瑞(R.K.Pathria)(作者),PaulD.Beale(作者)
  • 出版社:世界图书出版公司北京公司;第1版(2012年6月1日)
  • 出版时间:
  • 版次 :
  • 印刷时间:
  • 包装:
  • ISBN:9787510044120

  • 商家报价
  • 简介
  • 评价
  • 加载中... 正在为您读取数据...
  • 商品描述

    编辑推荐

    《统计力学(第3版)》初版于1972年,其内容涵盖了统计力学的标准内容,叙述清晰详细,深受读者欢迎。第2版对第1版的内容作了补充和删改,重写了关于相变理论的部分,增加了临界现象的重正化群理论的内容。

    作者简介

    作者:(美国)帕斯瑞(R. K. Pathria) (美国)Paul D. Beale

    目录

    preface to the third edition
    preface to the second edition
    preface to the first edition
    historical introduction
    1. the statistical basis of thermodynamics
    1.1. the macroscopic and the microscopic states
    1.2. contact between statistics and thermodynamics:physical significance of the number (n, v,e)
    1.3. further contact between statistics and thermodynamics
    1.4. the classical ideal gas
    1.5. the entropy of mixing and the gibbs paradox
    1.6. the "correct" enumeration of the microstates
    problems
    2. elements of ensemble theory
    2.1. phase space of a classical system
    2.2. liouville's theorem and its consequences
    2.3. the microcanordcal ensemble
    2.4. examples
    2.5. quantum states and the phase space
    problems
    3. the canonical ensemble
    3.1. equilibrium between a system and a heat reservoir
    3.2. a system in the canonical ensemble
    3.3. physical significance of the various statistical quantities in the canonical ensemble
    3.4. alternative expressions for the partition function
    3.5. the classical systems
    3.6. energy fluctuations in the canonical ensemble:correspondence with the microcanonical ensemble
    3.7. two theorems-the "equipartition" and the "virial"
    3.8. a system of harmonic oscillators
    3.9. the statistics of paramagnetism
    3.10. thermodynamics of magnetic systems:negative temperatures
    problems
    4. the grand canonical ensemble
    4.1. equilibrium between a system and a particle-energy reservoir
    4.2. a system in the grand canonical ensemble
    4.3. physical significance of the various statistical quantities
    4.4. examples
    4.5. density and energy fluctuations in the grand canonical ensemble: correspondence with other ensembles
    4.6. thermodynamic phase diagrams
    4.7. phase equilibrium and the clausius-clapeyron equation
    problems
    5. formulation of quantum statistics
    5.1. quantum-mechanical ensemble theory:the density matrix
    5.2. statistics of the various ensembles
    5.3. examples
    5.4. systems composed of indistinguishable particles
    5.5. the density matrix and the partition function of a system of free particles
    problems
    6. the theory of simple gases
    6.1. an ideal gas in a quantum-mechanical microcanonical ensemble
    6.2. an ideal gas in other quantum-mechanical ensembles
    6.3. statistics of the occupation numbers
    6.4. kinetic considerations
    6.5. gaseous systems composed of molecules with internal motion
    6.6. chemical equilibrium problems
    7. ideal bose systems
    7.1. thermodynamic behavior of an ideal bose gas
    7.2. bose-einstein condensation in ultracold atomic gases
    7.3. thermodynamics of the blackbody radiation
    7.4. the field of sound waves
    7.5. inertial density of the sound field
    7.6. elementary excitations in liquid helium ii
    problems
    8. ideal fermi systems
    8.1. thermodynamic behavior of an ideal fermi gas
    8.2. magnetic behavior of an ideal fermi gas
    8.3. the electron gas in metals
    8.4. ultracold atomic fermi gases
    8.5. statistical equilibrium of white dwarf stars
    8.6. statistical model of the atom
    problems
    9. thermodynamics of the early universe
    9.1. observational evidence of the big bang
    9.2. evolution of the temperature of the universe
    9.3. relativistic electrons, positrons, and neutrinos
    9.4. neutron fraction
    9.5. annihilation of the positrons and electrons
    9.6. neutrino temperature
    9.7. primordial nucleosynthesis
    9.8. recombination
    9.9. epilogue
    problems
    10. statistical mechanics of interacting systems:the method of cluster expansions
    10.1. cluster expansion for a classical gas
    10.2. virial expansion of the equation of state
    10.3. evaluation of the virial coefficients
    10.4. general remarks on cluster expansions
    10.5. exact treatment of the second virial coefficient
    10.6. cluster expansion for a quantum-mechanical system
    10.7. correlations and scattering
    problems
    11. statistical mechanics of interacting systems:the method of quantized fields
    11.1. the formalism of second quantization
    11.2. low-temperature behavior of an imperfect bose gas
    11.3. low-lying states of an imperfect bose gas
    11.4. energy spectrum of a bose liquid
    11.5. states with quantized circulation
    11.6. quantized vortex rings and the breakdown of superfluidity
    11.7. low-lying states of an imperfect fermi gas
    11.8. energy spectrum of a fermi liquid: landau's phenomenological theory
    11.9. condensation in fermi systems
    problems
    12. phase transitions: criticality, universality, and scaling
    12.1. general remarks on the problem of condensation
    12.2. condensation of a van der waals gas
    12.3. a dynamical model of phase transitions
    12.4. the lattice gas and the binary alloy
    12.5. ising model in the zeroth approximation
    12.6. ising model in the first approximation
    12.7. the critical exponents
    12.8. thermodynamic inequalities
    12.9. landau's phenomenological theory
    12.10. scaling hypothesis for thermodynamic functions
    12.11. the role of correlations and fluctuations
    12.12. the critical exponents v and
    12.13. a final look at the mean field theory
    problems
    13. phase transitions: exact (or almost exact) results for various models
    13.1. one-dimensional fluid models
    13.2. the ising model in one dimension
    13.3. the n-vector models in one dimension
    13.4. the ising model in two dimensions
    13.5. the spherical model in arbitrary dimensions
    13.6. the ideal bose gas in arbitrary dimensions
    13.7. other models
    problems
    14. phase transitions: the renormalization group approach
    14.1. the conceptual basis of scaling
    14.2. some simple examples of renormalization
    14.3. the renormalization group: general formulation
    14.4. applications of the renormalization group
    14.5. finite-size scaling
    problems
    15. fluctuations and nonequilibrium statistical mechanics
    15.1. equilibrium thermodynamic fluctuations
    15.2. the einstein-smoluchowski theory of the brownian motion
    15.3. the langevin theory of the brownian motion
    15.4. approach to equilibrium: the fokker-planck equation
    15.5. spectral analysis of fluctuations: the wiener-khintchine theorem
    15.6. the fluctuation-dissipation theorem
    15.7. the onsager relations
    problems
    16. computer simulations
    16.1. introductionand statistics
    16.2. monte carlo simulations
    16.3. molecular dynamics
    16.5. computer simulation caveats
    problems
    appendices
    a. influence of boundary conditions on the distribution of quantum states
    b. certain mathematical functions
    c. "volume" and "surface area" of an n-dimensional sphere of radius r
    d. on bose-einstein functionse. on fermi-dirac functions
    f. a rigorous analysis of the ideal bose gas and the onset of bose-einstein condensation
    g. on watson functions
    h. thermodynamic relationships
    i. pseudorandom numbers
    bibliography
    index

    文摘

    版权页:



    插图: